65 research outputs found

    Sensible introduction of MR-guided radiotherapy: A warm plea for the RCT

    Get PDF
    Magnetic resonance guided radiotherapy (MRgRT) is the newest face of technology within a field long-characterized by continual technologic advance. MRgRT may offer improvement in the therapeutic index of radiation by offering novel planning types, like online adaptation, and improved image guidance, but there is a paucity of randomized data or ongoing randomized controlled trials (RCTs) to demonstrate clinical gains. Strong clinical evidence is needed to confirm the theoretical advantages of MRgRT and for the rapid dissemination of (and reimbursement for) appropriate use. Although some future evidence for MRgRT may come from large registries and non-randomized studies, RCTs should make up the core of this future data, and should be undertaken with thoughtful preconception, endpoints that incorporate patient-reported outcomes, and warm collaboration across existing MRgRT platforms. The advance and future success of MRgRT hinges on collaborative pursuit of the RCT

    Patterns of utilization and clinical adoption of 0.35 Tesla MR-guided radiation therapy in the United States - Understanding the transition to adaptive, ultra-hypofractionated treatments

    Get PDF
    PURPOSE/OBJECTIVE: Magnetic resonance-guided radiation therapy (MRgRT) utilization is rapidly expanding worldwide, driven by advanced capabilities including continuous intrafraction visualization, automatic triggered beam delivery, and on-table adaptive replanning (oART). Our objective was to describe patterns of 0.35Tesla(T)-MRgRT (MRIdian) utilization in the United States (US) among early adopters of this novel technology. MATERIALS/METHODS: Anonymized administrative data from all US MRIdian treatment systems were extracted for patients completing treatment from 2014 to 2020. Detailed treatment information was available for all MRIdian linear accelerator (linac) systems and some cobalt systems. RESULTS: Seventeen systems at 16 centers delivered 5736 courses and 36,389 fractions (fraction details unavailable for 1223 cobalt courses), of which 21.1% were adapted. Ultra-hypofractionation (UHfx) (1-5 fractions) was used in 70.3% of all courses. At least one adaptive fraction was used for 38.5% of courses (average 1.7 adapted fractions/course), with higher oART use in UHfx dose schedules (47.7% of courses, average 1.9 adapted fractions per course). The most commonly treated organ sites were pancreas (20.7%), liver (16.5%), prostate (12.5%), breast (11.5%), and lung (9.4%). Temporal trends show a compounded annual growth rate (CAGR) of 59.6% in treatment courses delivered, with a dramatic increase in use of UHfx to 84.9% of courses in 2020 and similar increase in use of oART to 51.0% of courses. CONCLUSIONS: This is the first comprehensive study reporting patterns of utilization among early adopters of MRIdian in the US. Intrafraction MR image-guidance, advanced motion management, and increasing adoption of adaptive radiation therapy has led to a substantial transition to ultra-hypofractionated regimens. 0.3

    MR-guided radiotherapy for liver malignancies

    Get PDF
    MR guided radiotherapy represents one of the most promising recent technological innovations in the field. The possibility to better visualize therapy volumes, coupled with the innovative online adaptive radiotherapy and motion management approaches, paves the way to more efficient treatment delivery and may be translated in better clinical outcomes both in terms of response and reduced toxicity. The aim of this review is to present the existing evidence about MRgRT applications for liver malignancies, discussing the potential clinical advantages and the current pitfalls of this new technology

    Phantom-based quality assurance of a clinical dose accumulation technique used in an online adaptive radiation therapy platform

    Get PDF
    PURPOSE: This study aimed to develop a routine quality assurance method for a dose accumulation technique provided by a radiation therapy platform for online treatment adaptation. METHODS AND MATERIALS: Two commonly used phantoms were selected for the dose accumulation QA: Electron density and anthropomorphic pelvis. On a computed tomography (CT) scan of the electron density phantom, 1 target (gross tumor volume [GTV]; insert at 6 o\u27clock), a subvolume within this target, and 7 organs at risk (OARs; other inserts) were contoured in the treatment planning system (TPS). Two adaptation sessions were performed in which the GTV was recontoured, first at 7 o\u27clock and then at 5 o\u27clock. The accumulated dose was exported from the TPS after delivery. Deformable vector fields were also exported to manually accumulate doses for comparison. For the pelvis phantom, synthetic Gaussian deformations were applied to the planning CT image to simulate organ changes. Two single-fraction adaptive plans were created based on the deformed planning CT and cone beam CT images acquired onboard the radiation therapy platform. A manual dose accumulation was performed after delivery using the exported deformable vector fields for comparison with the system-generated result. RESULTS: All plans were successfully delivered, and the accumulated dose was both manually calculated and derived from the TPS. For the electron density phantom, the average mean dose differences in the GTV, boost volume, and OARs 1 to 7 were 0.0%, -0.2%, 92.0%, 78.4%, 1.8%, 1.9%, 0.0%, 0.0%, and 2.3%, respectively, between the manually summed and platform-accumulated doses. The gamma passing rates for the 3-dimensional dose comparison between the manually generated and TPS-provided dose accumulations were \u3e99% for both phantoms. CONCLUSIONS: This study demonstrated agreement between manually obtained and TPS-generated accumulated doses in terms of both mean structure doses and local 3-dimensional dose distributions. Large disagreements were observed for OAR1 and OAR2 defined on the electron density phantom due to OARs having lower deformation priority over the target in addition to artificially large changes in position induced for these structures fraction-by-fraction. The tests applied in this study to a commercial platform provide a straightforward approach toward the development of routine quality assurance of dose accumulation in online adaptation
    corecore